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for One-Dimensional 

This note contains a development of the theory of first passage times for 
one-dimensional lattice random walks with steps to nearest neighbor only. The 
starting point is a recursion relation for the densities of first passage times from 
the set of lattice points. When these densities are unrestricted, the formalism 
allows us to discuss first passage times of continuous time random walks. When 
they are negative exponential densities we show that the resulting equation is the 
adjoint of the master equation. This is the lattice analog of a correspondence 
well known for systems describable by a Fokker-Planck equation. Finally we 
discuss first passage problems for persistent random walks in which at each step 
the random walker continues in the same direction as the preceding step with 
probability a or reverses direction with probability 1 - a 
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1. I N T R O D U C T I O N  

The  theory  of first passage  t imes for systems with at  least  one abso rb ing  
b o u n d a r y  whose deve lopmen t  in t ime is descr ibed  by  a F o k k e r - P l a n c k  
(FP)  equa t ion  was first given by  Pontryagin ,  Andronow,  and  Wit t .  (!) They  
showed that  the p robab i l i t y  dens i ty  for the first passage t ime to absorp t ion  
f rom a given po in t  r satisfies the ad jo in t  to the F P  equat ion.  This a l lowed 
them to write down  readi ly  solvable  equat ions  for  the m o m e n t s  of t ime to 
abso rp t ion  for  one -d imens iona l  systems. I t  does no t  seem to be genera l ly  
k n o w n  that  the theory  of la t t ice systems tha t  a l low for neares t -ne ighbor  
t ransi t ions  only  can  be  descr ibed  by  equat ions  ent i rely ana logous  to the F P  
equat ion,  a l though  van  K a m p e n  (2) has  recent ly  po in ted  this out. In  this 
note  we show that  for  these systems one has the ana logous  result  that  the 
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probability density of first passage times satisfies a fairly simple equation 
that allows one to find discrete analogs to the continuum results. In 
particular it will allow us to calculate moments of first passage times for 
one-dimensional systems in a much simpler way than the recursive tech- 
nique suggested in Ref. 3. For simplicity we discuss the one-dimensional 
case only since the most useful results are obtained for it. We will also 
discuss the theory of first passage times for so-called persistent random 
walks. This theory does not appear to have been dealt with in the literature 
before. The fundamental equations of the present development, Eqs. (1) 
and (25), can be regarded as analogs of the renewal equation used by 
Darling and Siegert (4) in the context of first passage time problems. 

2. CONTINUOUS TIME RANDOM WALKS 

Suppose that Qr(t) is the probability density function for absorption of 
a random walker on a lattice interval (0, N) given the initial position r. At 
least one of the points, 0 or N, is absorbing, and the other can be absorbing 
or reflecting. Let ar(t)dt [br(t)dt] be the joint probability that the sojourn 
time at r is between t and t + dt, and that the succeeding transition is a step 
to the right (left). Then it is easily verified that the Qr(t) satisfy 

Qr( t )= fo tar ( , r )Qr+l( t -~)d~+ fotbr(,r)Qr_l(t-~-)d'r (1) 

subject to QN(t) = 8(0  for N an absorbing point. Different definitions can 
be used for a reflecting point. For example if r = 0 is reflecting such that 
when a random walker reaches it the walker is instantaneously transferred 
to r = l, then the relevant boundary condition is Qo(t)= Ql(t). Other 
definitions of reflection may be more natural and lead to boundary 
conditions that can be dealt with fairly easily. When the state probabilities, 
which we denote by Pr(t), satisfy an ordinary master equation, the ar(t ) 
and br(t ) can be given as 

ar(t ) = ~Xr exp[--(e~ r + fir)t], br(t ) = fir e x p [ - ( a ~  + fir)t] (2) 

where ct r and fir are rate constants. In all cases ar(t ) + br(t ) = ~r(t) is the 
probability density of sojourn time at r. 

If we use the ansatz in Eq. (2) and substitute this into Eq. (1), we can 
use Laplace transforms to show that the Qr(t) satisfy the set of differential 
equations 

Or = CtrA2Qr-1 -t- (or r - fir )AQr_l (3) 

where AQr_ 1 ~- Q~ - Qr-1. In this case the master equation itself can be 
written 

/~, = A[A(fir_lP,_l)  - (a,_: - f i r _ l ) P r _ l  ] (4) 
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analogous to the FP  equation. It is easily verified that Eq. (3) is the adjoint  
of the master  equat ion just given. When  the state probabilities satisfy a 
generalized master equat ion we must  return to Eq. (1) and take Laplace 
transforms. If we denote  the Laplace t ransform of a funct ion by that same 
funct ion with an asterisk, i.e., ~[f( t )]  = i f ( s ) ,  then Eq. (1) is readily 
t ransformed into 

[1 - 4,*(s)] QT(s) = a*(s)A2Or*_~ + [ a * ( s )  - b T ( s ) ] A Q *  ] (5) 

Both Eqs. (1) and (3) allow us to write down and solve equations for 
the moments  rather  simply. Suppose that the mean  time to absorpt ion 
starting from r is T r. Then  we note  that 

Tr = foo~tQr(t) dt = dQ* s=o - ~ (6)  

which allows us to work with the Laplace transforms in Eq. (5). To develop 
the formalism, let us set 

a~*(O) =foo~ar(t)dt  = 0 r < 1 (7) 

so that br*(0 ) = 1 - 0 r. Not ice  that 0 r is the probabil i ty of moving to the 
right starting from r. Then  Eq. (5), together with the obvious identity 

fo ~ Or(t) dt = Q* (0) = 1 (8) 

allows us to write 

OrA2Tr_] -t- (20 r - 1 ) a r r _  1 = -/~r (9) 

where IZr is the mean  sojourn time for a single sojourn in state r, 

= fo~ttPr(t) dt (10) 

assumed to be finite. In the special case  in which the generalized master 
equat ion is an ordinary master  equation, Eq. (9) takes the slightly simpler 
form 

OLrA2rr_l "l- (OL r -- t~r )m rr_ 1 = -- 1 (11) 

but  the more  general Eq. (9) is as readily solved as is this one. A solution to 
Eq. (9) is found by rewriting the left-hand side as 

OrA2Tr_1 + (20 r -- 1)ATr_ 1 = ArA(BrATr_]) (12) 

where A r and B r are chosen to ensure that the coefficients of the difference 
terms are in agreement.  One finds in this way that 

Br+l Or 
- 1 - or  ( 1 3 )  



590 Weiss 

or  B r = ~ r -  1B 1 where 

r - l O J  (14) 
Xr--I = r [  l - -  6 j = l  

Similarly we have A r = Or/(XrB1). Since nearest-neighbor equations auto- 
matically satisfy detailed balance 0 r can also be written as a ratio of 
equilibrium probabilities for a lattice without absorbing sites. <2'5~ Since the 
parameters A r and B r in Eq. (12) appear in multiplicative form, the 
parameter B l cancels and may be set equal to 1. Equation (9) is therefore 
equivalent to 

A ( ~ _  iATr_ 1) = -- ~r~/Or (15) 

A general solution to this equation can be obtained by summing both 
sides of this equation. This yields 

B 1 
ATr = ~ X~ ~ 0 i 

(16) 
j = l  

where B is an arbitrary constant. A second summation leads to 

T r = A + B ~  1 ~ 1 ~  ~i~i (17) 
s= s=l i=l 

where A is an arbitrary constant and it is understood that both sums are set 
equal to 0 when r = 0. We now have an expression analogous to that 
obtained for processes described by a FP equation, except that the integrals 
are replaced by sums. Let us suppose that r = N is always absorbing so that 
T N = 0. If T O = 0 we find from this last equation that A = 0 and 

( 1 ~ #i~i) 1 (18) . - -  
s = l  i ~ l  s=l 

This form is obtained by setting T O = 0 first followed by setting T N = 0. If 
we reverse the order in calculating the disposable constants we find the 
alternate expression 

i=~ 1 (19) 
T r = E ~  Oi N ~ii i=1 1 i = r + l  s = r + l  Z ~ s 

s = l  

which is easily shown to be equal to Eq. (17). When r = 0 is reflecting the 
expression obtained for T r depends on the rule imposed when the random 
walker reaches r = 0. If we suppose that the random walker remains at 
r = 0 for an average time/~o and is then transferred to r = 1, the arbitrary 
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constants are determined from the requirement that T N -- 0 and T o = Tj + 
/~0, which allows us to write 

rr= 2 x, t0+ (20) 
s = r + l  i=2 " ~ /  

A similar expression is easily derived when we assume that the random 
walker is transferred to position r 0 after a mean time/~0, or indeed if it is 
transferred to a random lattice point with a known distribution. 

One can use Eq. (5) to generate equations for the higher moments. For 
example, if the variance of the first passage time is denoted by a~ and the 
variance of a single sojourn time at lattice point r is v, then the o~ satisfy 

OrA202_, 3r (20r __ 1)A(I2 1 = __Or(1 __ Or) (Tr+l  __ Tr_ l )  2 

4- 2 [ G ( - ) O  r - G ( 4 - ) ( I  - Or)] (Tr+ 1 - r r _ , )  - v r (21) 

where v , (+)  and v r ( -  ) are 

pr( 4- ) = foC~tar( t )d t ,  p r ( - )  = foomtbr( t )d t  (22) 

The boundary condition corresponding to an absorbing point is o~ = 0, 
and that corresponding to a reflecting point depends on the specific model 
of reflection used, but is analogous to the boundary condition for mean 
first passage times. Details of the solution are exactly the same as that for 
the mean. The same formalism can be applied to the calculation of the 
probability of absorption by a particular absorbing point in one dimension. 
If we suppose that both r = 0 and r = N are absorbing and let ~-~r be the 
probability that absorption occurs at N starting from r, then one can easily 
show that the f~r satisfy 

0,+,A2a~ + (20,+1 - 1)Aa, = 0 (23) 

subject to ~20 - 0, f~v = 1. The general solution to this equation is given in 
Eq. (17) with all of the/~i = 0. It is easy to show from that relation that 

1 1 (24) 
s= l  s = l  

3. PERSISTENT RANDOM WALKS 

Finally, we point out that the preceding analysis can also be carried 
out for different generalizations of so-called persistent random walks. These 
were originally introduced by Taylor (6'7) as a model for diffusion, and in 
the continuum limit lead to a telegraph, rather than a diffusion equation. 
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Several generalizations of these are possible (s) but there is no discussion of 
first passage time problems for these processes in the literature. In a 
persistent random walk on a lattice one specifies the probability of a step 
continuing in the same direction as the preceding one or of reversing 
direction. We consider a simple model for persistence in which the time 
between successive steps is a random variable, the probability density for 
time of a single sojourn at lattice site r being ar(t ) independent of the 
direction of motion. Let Ur(t ) be the probability density function of the 
first passage time starting from r, conditional on the first step being from r 
to r + 1, let Vr(t ) be the analogous quantity when the first step is to r - 1, 
let a be the probability that the following step will be in the same direction 
as one preceding, while fl = 1 - a is the probability of reversing direction. 
In place of Eq. (1) we now have 

Ur(t ) = fotar(t)[ aUr+,(t - ~) + flVr+l(t -- ~')] d'r 

mr(t ) = fotar(t)[ ~Ur_ l ( t -  "r) -[- otVr_l(t-  '7")] a,'r (25) 

In particular, when ar(t ) = Xr exp(--Xrt), these relations can be replaced by 

(Jr + XrSr = Xr[ OLSr+ l -l- Bgr+ l ] 

~Z r -[- ~krW r = ~kr[ •Ur_ 1 -I-- aWr_l ] (26) 

If r = N is an absorbing point Eq. (25) must be supplemented by the 
boundary condition U~_l(t  ) = aN_l(t  ) while if r = 0 is absorbing the 
appropriate boundary condition is Vl(t ) = al(t ). Reflecting boundary con- 
ditions, as before, depend on the particular model of reflection used. 

The convolution form of Eq. (25) suggests that it would be advanta- 
geous to introduce Laplace transforms. If we do so we can convert Eq. (25) 
to a first-order relation 

[ 1 -]32a*+,(s )a*(s )J  
U*+l(s) = aa*(s) U*(s) - f l a * l ( s ) V * ( s  ) 

V*+ l(s) = fla*+ l(s) U* (s) + aa*+ ,(s) V* (s) (27) 

Alternatively we can eliminate of the variables to find second-order recur- 
rence relations for the U*(s) and V*(s) separately. If we set Fr(s ) = 1/a*(s)  
these recurrence relations are 

a r r+ , ( s )  u*+ l(s) + [ 1 - 22 - L ( s ) r r + , ( s ) ]  U* (s) + ~rr_,(~)  U:_,(~) = 0 

-L+ i(S) v:+ l(S) -1- [ l -- 20t -- L(.)L-,(*)I v* + .rr_ ,(.) v*_,(s) = o 

(28) 
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Equation (27) provides a slightly more convenient starting point for the 
calculation of moments. If we use the following notation: 

= fo~tar(t)  dt ~r 

A r =  fo~tUr( t )  dt , Br= foo~tg~(t) dt (29) 

and differentiate Eq. (27), setting s = 0 thereafter, we find 

A A  r = f l ( A  r - B r )  - ( 1 / 0 0 ( p ,  r -4- fl/Zr+ 1) 

A B r  -~- 1 ~ ( A r  - g r )  "~- /'s I (30) 

with the boundary conditions AN_ 1 = /~N-), B1 = #1" By subtraction of 
these two equations we find that 

A(Ar - B~) = - ( l / a ) ( ~  + ~r+,) (31) 
o r  

A r - -  B r = A 1 - -  g 1 - -  (1//o0(/~ 1 + 2bt 2 + 2#3 + �9 . .  + 2/t~_ 1 + /~ )  

= A 1 - -  9 1 - -  C r (32) 

where C~ is the known sum on the right side. Hence it follows that 

AA~ =/~(A,  - B,) - BCr+, - ~r (33) 

where the right-hand side does not depend on the A r. The solution to this 
last equation is easily seen to be 

r - - |  

A r - - A I + ( r - I ) f l ( A 1 - B 1 ) -  ~ ( r - i ) ( f l C i + l + l z i )  (34) 
i=~ 

The parameter B~ is known to be /~l, so that all that is needed for a 
complete solution is the parameter A~. But this can be calculated from the 
second condition A u_ ~ = I~u- 1. In this way we find 

N--2  

]s "1- (X - 2)fl/~ l + ~,, (/~Ci+ 1 --{- tti)(N - -  1 - i) 
i=I (35) 

A1 = 1 + ( N -  2)fl 

which, together with Eqs. (32) and (34), completes the formal solution for 
the mean first passage times. 

Further generalizations of the preceding results are easily developed 
for one-dimensional problems. One trivial generalization is to allow for 
different pausing time densities that depend on the direction of motion. All 
of the preceding theory can be formally generalized to multidimensional 
nearest-neighbor random walks, but just as in the case of systems described 
by a Fokker-Planck equation no general solutions to the relevant equations 
are available for these more complicated systems. 
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